0=-4.9t^2+173t

Simple and best practice solution for 0=-4.9t^2+173t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-4.9t^2+173t equation:



0=-4.9t^2+173t
We move all terms to the left:
0-(-4.9t^2+173t)=0
We add all the numbers together, and all the variables
-(-4.9t^2+173t)=0
We get rid of parentheses
4.9t^2-173t=0
a = 4.9; b = -173; c = 0;
Δ = b2-4ac
Δ = -1732-4·4.9·0
Δ = 29929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{29929}=173$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-173)-173}{2*4.9}=\frac{0}{9.8} =0 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-173)+173}{2*4.9}=\frac{346}{9.8} =35+1/3.26666666667 $

See similar equations:

| 39-9x=11+5x | | 8x-15=3x-9 | | (3x-4)/7=4 | | y-10+50=180 | | 7z-20=-3z | | -38+7x=-8(x+1) | | -4(2x-1)+6x=22 | | R=4+3x | | 2x(3-2)=12 | | 14-6x=-64 | | -.75(8n+12)=3(n-3) | | -7n-3n=-9-n | | 6x÷3=6x-20-x | | -7-4(3-2r)=8r-19 | | X+2x+6x+3=148 | | 7=3b+1 | | 6(10^x)=1 | | 5z+26=17-4z | | 6x-34=5x+2 | | 2x+3=7-2/3x | | x/5–20=15 | | X+2x+6x-3=148 | | x/5–20=15 | | X-5=(5-x) | | |12-4x|=8 | | 1/2y+2/3y-1/6=4+1/3y | | 6x+17=-2x-7 | | (3x−2)(x+5)=0 | | (-2)=4x^2+1 | | 3x−2)(x+5)=0 | | 1/4x+17=×-4 | | 3x−2)(x+5)=0. |

Equations solver categories